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black hole perturbations  stellar perturbations

The theory of perturbations of non rotating stars was first developed 

by Prof. Thorne and collaborators in the late Sixthies

Thorne & Campolattaro, A.  1967 ApJ  149, 591

Thorne & Campolattaro, A.  1967 ApJ   152, 673

Thorne 1969  ApJ 158 1

Thorne 1969  ApJ  158 997

Price & Thorne 1969 ApJ  155, 163

Campolattaro, Thorne 1970  ApJ 159, 847

Ipser, Thorne 1973  ApJ 181, 181

��

Chandra wanted to attack the problem from a different point of view, 

in analogy with the theory of black hole perturbations 



Some basic results of the theory of black hole perturbations:

Regge&Wheeler 1957

F. Zerilli 1970

Perturbations of  Schwarzschild black holes

 -  axial (odd) perturbations

 + polar (even) perturbations



A wave equation also for the perturbations of Kerr black holes

s= is the  spin-weight parameter, s=0, ± 1, ± 2, 

for scalar, electromagnetic and gravitational perturbations

satisfies the equations of the oblate spheroidal harmonics

S.Teukolsky 1972 Phys. Rev. Lett. 29, 1114

S.Teukolsky 1973  Ap. J. 185, 635

the potential is complex and depends on m and on frequency



Black hole perturbations are described by wave equations, with 

one-dimensional  potential barrier generated by the spacetime 

curvature

Black hole perturbations can be studied as a scattering problem.

Standard methods used in quantum mechanics can be used to 

find the quasi-normal mode frequencies: they are the singularity

of the scattering cross-section associated the wave equation 



In quantum mechanics  the equation which expresses the symmetry and

unitarity of the S-matrix

is an energy conservation law: if a wave of unitary amplitude is

incident on one side of the potential barrier, it gives rise to a reflected and a

transmitted  wave such that the sum of the square of their amplitudes is

still one.

This conservation law is a consequence of  the constancy of the Wronskian

of pairs of independent solutions of the Schroedinger equation.

Same is for black holes: the constancy of the Wronskian of two

independent solutions of the black holes wave equation, allows to write the

same equation relating the reflection and transmission coefficients of the

potential  barrier.

Energy conservation also governs  phenomena involving

gravitational waves emitted by perturbed black holes.



The reflection and absorption of incident  gravitational waves by 

a perturbed black hole or by a perturbed star, become different 

aspects of the same basic theory.

This idea needed to be substantiated by facts:  first of all we needed an

equation expressing the conservation of  energy for stellar perturbations.

Problem:  black hole perturbations are described by wave equations,

whereas the equations describing a perturbed star are a higher order

system, in which the perturbation of  the metric functions couple

to the perturbations of the fluid.



working hard on the equations we were able to derive a  vector  in terms of

the metric and fluid perturbations

by Gauss’ theorem, the flux of              across a closed surface

surrounding  the star is a constant.

 Which is the physical meaning of this vector?

    How do we establish that it is the flux of gravitational energy which  

      develops through the star and propagates outside?

Chandrasekhar S. and Ferrari V. 1990, Proc. R. Soc. Lond.  428, 325

Chandrasekhar S. and Ferrari V. 1991, Proc. R. Soc. Lond.  435, 645

 Is it related to a stress-energy pseudotensor of the gravitational field?



remind: 

             polar (even) equations couple metric and fluid perturbations 

             

             axial (odd) equations  describe pure spacetime perturbations

We derived the equations describing the perturbations of a 

non rotating star in the same gauge used for Schwarzschild 

perturbations



Some results obtained with the new approach

A wave equation for the axial perturbations 

the  potential barrier depends on how the energy-density and the pressure are distributed

inside the star in its equilibrium configuration.  For r > R it reduces to the Regge_Wheeler

potential

black holes: scattering by a one-dimensional 

potential barrier

stars: scattering by a central potential

Chandrasekhar S. and Ferrari V. 1991, Proc. R. Soc. Lond.  434, 449



if we look for solutions that are regular at r=0

and behave as pure outgoing waves at infinity

we find  modes which do not exists in Newtonian 

theory

    if the star is extremely compact, the potential in the

      interior is a well, and if this well is deep enough

      there can exist one or more

      slowly damped QNMs     (or   s-modes)

    another branch of modes are the w- modes

      they are associated to the scattering of  GW- waves

      at the peaks of the barrier. They are higly damped

Until very recently,  the common belief was that w- modes are unlikely to be  excited 

in astrophysical processes. However in 2005 it has been shown that, they are excited

in the collapse of a neutron star to a black hole,  just before the black hole forms

Chandrasekhar S. and Ferrari V. 1991, Proc. R. Soc. Lond.  434, 449

Kokkotas K.S. 1994, MNRAS  268, 1015

 Baiotti L., Hawke I., Rezzolla L. and Schnetter E. 2005,  Phys. Rev. Lett. 94, 131101



The determination of the characteristic frequencies at which a star

oscillates is central to the theory of stellar perturbation, since these

frequencies  appear to be encoded in various radiative processes

any initial perturbation will, after a transient, decay as a 

superposition of quasi normal modes

 

                                               

gravitational waves  are emitted with the frequencies and 

damping times of these modes.  



NORMAL MODES IN NEWTONIAN THEORY

 the star is set in oscillation by some unspecified external agent.

After separating the variables, the hydrodynamical equations

are manipulated in such a way that the quantity which is singled out to

describe the perturbed star is the Lagrangian displacement

in its terms, the accompanying changes in the density, the pressure and

the gravitational potential, can all be expressed uniquely.

by assuming

the linearized hydro-equations are reduced to a characteristic value problem

for the frequency.



The polar perturbations couple the perturbations of the metric with the

fluid perturbations

however

the equations governing the metric variables can be decoupled from those

for the hydrodynamical variables (in the same gauge as for Schwarzschild pert.) 

once the equations governing the metric functions have been solved, the

solution for the hydrodynamical variables follows algebraically,

without any further ado.

Our approach to the polar perturbations is different from that of 

Newtonian theory, since our emphasis is on the gravitational field

rather than on the fluid behaviour.

Given an equilibrium configuration, for any assigned EOS,  it is very easy to evaluate the

QNM frequencies by integrating the equations for the metric perturbations inside and

outside the star.

Chandrasekhar S. and Ferrari V. 1991, Proc. R. Soc. Lond.  432, 247

Chandrasekhar S., Ferrari V. and Winston R. 1991, Proc. R. Soc. Lond.  434, 635

Chandrasekhar S. and Ferrari V. 1992, Proc. R. Soc. Lond.  437, 133



Chandrasekhar S. and Ferrari V. 1991, Proc. R. Soc. Lond.  433, 423

An interesting consequence of the theory

Slowly rotating stars: the axial perturbations

couple to the polar ones  (and viceversa)

if the star is non rotating, axial and polar

perturbations are described by two distinct

sets of equations

functions describing the polar perturbations at zero order on the angular velocity

function responsible for the dragging of inertial frames 



Chandrasekhar S. and Ferrari V. 1991, Proc. R. Soc. Lond.  433, 423

An interesting consequence of the theory

Slowly rotating stars: the axial perturbations

couple to the polar ones  (and viceversa)

if the star is non rotating, axial and polar

perturbations are described by two distinct

sets of equations

functions describing the polar perturbations at zero order on the angular velocity

function responsible for the dragging of inertial frames 

rotating stars extert a dragging not only of the bodies, but also of the

waves, and consequently an incoming polar gravitational wave  can

convert through the fluid oscillations it excites, some of its energy into

outgoing  axial waves.



Quasi-normal modes frequencies were studied using two 

                               different approaches

frequency domain

Thorne and collaborators, 

Lindblom,  Detweiler,

Chandrasekhar, Ferrari

time domain

Vishveshwara (for black holes), 

Andersson, Kokkotas, Stergioulas

Allen, Schutz

first calculations  for the polar modes in 1983 by

Lindblom  and Detweiler    Ap.J Suppl 53,1983

Gravitational wave asteroseismology:

Suppose that a gravitational signal emitted by a perturbed neutron star is detected and, 

by an appropriate data analysis, we are able to determine the frequency of one or more mode: 

will this information allow to constraints  the equation of state of matter in the stellar core? 

To answer these question we need to compute the mode frequencies

 (and the damping times)  for stars modeled with the 

EOS proposed to describe matter at supranuclear density



            Different families of modes can be directly associated with

                                    different core physics.

f (fundamental)-mode (which should be the most efficient GW emitter) scales

   with average density

p (pressure)-modes overtones probe the sound speed throughout the star

g (gravity)-modes are sensitive to thermal/composition gradients:

    the restoring force is buoyancy

w-modes represent oscillations of spacetime (high frequency very rapid damping).

     They exist both for polar and axial perturbations

s (trapped)-modes (axial modes ; they exist only for utradense stars)

r -modes (Coriols force as restoring force; the star rotates)

A mature neutron star also has elastic shear modes in the crust and superfluid

modes.

Magnetic stars may have complex dynamics due to the internal magnetic field.

There is a lot of physics to explore. 



The equation of state  (EOS) in the interior of a neutron star is largely

                                             unknown

At densities lager than                                                          the fluid is a gas

of interacting nucleons

Available  EOS have been obtained within models of strongly interacting matter, based

on the theoretical knowledge of the underlying dynamics and constrained, as much as

possible, by empirical data.

                                             Two main, different approaches:

-  nonrelativistic nuclear many-body theory NMBT

-  relativistic mean field theory RMFT

A useful way of classifying EOS's is through  their stiffness, which can be quantified in terms of the

speed of sound    vs        : stiffer EOS's correspond to higher  vs .

                                          stiffer EOS’s   correspond to less compressible matter.



                Non Relativistic Nuclear Many-Body  Theory NMBT

Relativistic mean field theory RMFT

nuclear matter is viewed as a collection of pointlike protons and neutrons, whose dynamics is described by the

nonrelativistic Hamiltonian:

-The two- and three-nucleon interaction potentials are obtained from fits of existing scattering data.

- ground state energy is calculated using  either variational techniques or  G-matrix perturbation theory 

- based on the formalism of relativistic quantum field theory, nucleons are described as Dirac particles 

  interacting through meson exchange.  In the simplest implementation of this approach the dynamics 

  is modeled in terms of a scalar and a vector field.

- equations of motion are solved in the mean field approximation, i.e. replacing the meson fields with

  their vacuum expectation values

- the parameters of the Lagrangian density, i.e. the meson masses and coupling constants, can be determined 

  by fitting the empirical properties of nuclear matter, i.e. binding energy, equilibrium density and compressibility

NMBT and RMFT can be both generalized to account for the appearance of  hyperons



w-modes  have high frequency and very rapid  damping.

  They exist both for polar and axial perturbations

Andersson N., Kokkotas K.D, 1998  MNRAS 299

Benhar O., Berti E., Ferrari V. 1999 MNRAS  310

Pure spacetime   modes

EOS A . Pandaripande 1971. Pure neutron

matter, with dynamics governed by a

nonrelativistic Hamiltonian containing a

semi-phenomenological interaction potential.

EOS B. 1971 Generalization of EOS A,

including protons, electrons and muons in _-

equilibrium, as well as heavier barions

(hyperons and nucleon resonances) at

sufficiently high densities.

EOS WWF. Wiringa, Fiks, Fabrocini 1988.

Neutrons, protons, electrons and muons in  _-

equilibrium. The Hamiltonian includes two-

and three-body interaction potentials. The

ground state energy is computed using a more

sophisticated and accurate many body

technique.

EOS L. Pandaripande & Smith1975. Neutrons

interact through exchange of  mesons (_,_,

_). The exchange of heavy particles (_,_) is

described in terms of nonrelativistic

potentials, the effect of  _-meson is described

using relativistic field theory and the mean-

field approximation.

dashed lines: polar w-modes

continuous lines: axial w-modes



w-modes  have high frequency and very rapid  damping.

  They exist both for polar and axial perturbations

Andersson N., Kokkotas K.D, 1998  MNRAS 299

Benhar O., Berti E., Ferrari V. 1999 MNRAS  310

Pure spacetime   modes

about the EOS compressibility:

- B softest (more compressible)

- L  stiffest

dashed lines: polar w-modes

continuous lines: axial w-modes

-axial and polar w-modes

 depends essentially on the 

stiffness of the equation of state.

-axial w-mode frequencies

 range within intervals that 

 are separated; 

 for each  EOS 

 is nearly independent of M/R

unfortunately w-modes frequencies are rather far

from the sensitivity area of modern

GW detectors



Polar Quasi Normal Modes which are coupled to fluid motion:

frequencies are smaller than for those of the w-modes.

                          For a cold, old neutron star

first calculations in 1983 by Lindblom and Detweiler

Lindblom, Detweiler Ap.J Suppl 53,1983

N. Andersson, K.D. Kokkotas,   MNRAS  299, 1998

Benhar, Ferrari ,Gualtieri   Phys. Rev.  D 70,  2004

Benhar, Ferrari ,Gualtieri, Marassi   Gen. Rel. Grav 39 ,  2007

results for the fundamental mode, which is expected to

be the most efficient GW emitter:



strange stars (yellow region)

modeled using MIT bag model Benhar, Ferrari ,Gualtieri   Phys. Rev.  D 70,  2004

Benhar, Ferrari ,Gualtieri, Marassi   Gen. Rel. Grav 39 ,  2007

The fundamental mode frequency  of  old, cold  neutron stars

is plotted for different EOS  versus the mass of the star.

There is a small range of frequency where

neutron/hybrid stars are indistinguishable

from strange stars.

However, there is a large frequency region

 where only strange stars can emit.

Strange stars cannot emit GWs with

        _f < 1.7 kHz    , for any values

 of the mass in the range we consider

Since _f is an increasing function of the

bag constant B, detecting a GW from a strange 

star would allow  to set constraints on B much 

more stringent than those provided by the 

available experimental data 



 �Equations of state considered

                     Inner core          >     
0

        
0

 = 2.67 x 1014 g/cm3

APR2::    n  p  e-  μ-    3-body interaction  phenomenological Hamiltonian

                  2-body potential= Argonne v18,  3-body potential=Urbana IX

                  Schroedinger equation solved using variational methods

                  including  relativistic corrections

                  Akmal A., Pandharipande V.R, Ravenhall D.G., Phys. Rev C58, 1998

APRB120/200:  APR2+ interacting quarks confined to a finite region (the bag)

             whose volume is limited by a pressure B said the bag constant

              (B=120 or 200 MeV/fm3,            _s=0.5 m
s
=150 MeV)

BBS1:       n  p  e-  μ-  3-body interaction  phenomenological Hamiltonian

            2-body potential= Argonne v18,  3-body potential= Urbana VII
                    (no relativistic corrections );  Schroedinger equation solved using perturbative

            methods   Baldo M., Bombaci I., Burgio G.F., A&A 328, 1997

BBS2:        same as  BBS1+  heavy barions --   and  0  (no relativistic corrections )

             Baldo M., Burgio G.F., Schulze H,J, Phys. Rev. C61, 2000

G240:  e-  μ-   and the complete octet of baryons; mean field approximation is used to

            to derive the equations of the fields        Glendenning N.K.



Can stars be entirely made of quarks   (Bodmer 1971,Witten 1984)

MIT Bag model  :

Fermi gas of up, down, strange quarks confined in a region with volume

determined by pressure= Bag constant B. The interactions between quarks

are treated perturbatively at first order in the coupling constant 
s

From Particle Data Book

                 m
u  

~  m
d
   ~ few MeV       m

s
  = (80-155) MeV

                                    3 parameters    
s 
 , m

s
  , B

Can we say something on the absolute ground state 

of matter    using gravitational waves?

-  Hadron collision experiments               0.4     s       0.6

-  High energy experiments                    57    B  350 MeV/fm3
   (hadron mass, magnetic moments, charge radii measurements)

-  The requirement that SQM is stable at zero temperature  implies

that B    95  MeV/fm3

We choose         57    B  95 MeV/fm3



do we have a chance to detect a signal from an oscillating star?

A typical GW signal from a neutron star pulsation mode has the form of a damped sinusoid

How much energy would need to be channeled into a mode?

For mature neutron stars  we can take as a bench-mark the energy involved in a typical pulsar

glitch, in which case

3rd generation detectors are needed to detect signals from old neutron stars



More promising are oscillations from newly-born neutron stars: more energy can be

stored in the modes

The oscillation spectrum evolves during the observation:

The frequencies of the fundamental mode, and of the

first g-, p- and w- modes

of an evolving proto--neutron star are

plotted as  functions of the time elapsed from the 

gravitational collapse, during the first 5 seconds.

Ferrari ,Miniutti, Pons   MNRAS, 342  2004

Having _(t) and _(t), we can

estimate the amount of energy

 _E
GW

 that should be stored in

a given mode for the signal to be

detectable with an assigned SNR

by a given detector.

Pons, Reddy, Prakash, Lattimer, Miralles,  ApJ    307  1999









Recent applications of the theory of stellar perturbatons

in connection with magnetar observations (B > 1014 Gauss)

Soft Gamma Repeaters (SGRs) are astronomical objects with  a giant flare activity:

L      1044 -1046 ergs/s

giant flares are thought to be associated with starquakes, due to a rearrangements of the

the huge magnetic field.

3 events detected, in 1978, 1998, 2004: in the tail of two of them, lasting several hunded

seconds, Quasi-Periodic Oscillations have been observed

               _ = 18, 26, 30, 92, 150, 625, 1840 Hz in SGR 1860-20

               _ = 28, 53, 84,  155   Hz in SGR 1900-14

are these interface modes generated at the interface between core and crust? 

                                   they range within 10-30 Hz
are these shear modes in the solid crust of neutron stars?  

                                   they start from around 100 Hz

are these Alfven oscillations? 

magnetic fields have

to be included in the 

picture

Cowling approximation

and time evolution are

the most used approaches 
The QPO spectrum is not yet  fully understood!

groups working on these topics led by Andersson, Kokkotas, Stergioulas, Jones, Watts…



A theory of perturbations for rotating stars 

The mathematical tools used so far do not allow to  separate the

                                    perturbed equations

As we have seen in the case of slow rotation, the standard expansion in tensor

spherical harmonics leads  to a coupling of the axial and polar perturbations:

    the number of couplings to be considered increases with the rotation speed 

Schwarzschild black holes:

tensorial spherical harmonics

Kerr black holes: oblate

spheroidal harmonics

for perturbed black holes, variable separation in terms of:

stellar perturbations of rotating stars have been studied either in the slow rotation regime, or

using the Cowling  approximation, which neglect the spacetime perturbations.

or, more recently, in full GR!

B. Zink, O. Korobkin, E. Schnetter, N. Stergioulas,    Phys. Rev. D81,  2010



Supercomputers  allow us to approach very complex problems, which only

ten years ago one would had dreamed to solve.

                                               However

perturbation theory remains a very powerful tool to investigate the

dynamical behaviour of stars.

If the harmonics appropriate to separate the equations for the

perturbations of a rotating stars are found, the field will receive

an incredibly powerful burst.



N. Andersson, K.D. Kokkotas,   MNRAS  299, 1059, 1998

Polar Quasi Normal Modes: can a NS radius be measured using GWs?

‘The results indicate that, should

the various pulsation modes be

detected by the new generation of

gravitational wave detectors that

come online in a few years, the

mass and the radius of neutron

stars can be deduced with errors no

larger than a few per cent. ’



Polar Quasi Normal Modes:  some more recent calculations using new EOSs

Benhar, Ferrari ,Gualtieri   Phys. Rev.  D70 n.12,  2004

the new fit (continuous black line)  is

sistematically lower

than the Andersson-Kokkotas fit  (dashed line)

by about 100 Hz;

this basically shows that the new EOS are, on

average, less compressible (i.e. stiffer) than

 the old ones.



How to use the fits: consider a NS with

                                                                M=1.4 Mo   R=11.58 km  (EOS APR2)

The frequencies of the fundamental mode and of the first p-mode are

_
 
_

 F  
=1.983 kHz, _ 

p1
  =6,164 kHz

M=1.303 Mo   R=11.36 km

true value

Mass with a 7% error

radius with a 2% error

M/M
o



Uncertainty on radius and mass 

is huge!

It ranges from 10% to 20% for R

mass cannot be determined

gravitational wave asteroseismology will become possible when GW-

detectors will become  more sensitive to the high frequency region, and

when nuclear matter studies will put tighter constraints on  the

parameters that characterize the equation of state  of superdense matter.

the new fits come with an error bar:


